КЛИНИКА И ФАРМАКОТЕРАПИЯ

ЭФФЕКТИВНОСТЬ ОТЕЧЕСТВЕННОГО МИОКАРДИАЛЬНОГО ЦИТОПРОТЕКТОРА И ЕГО ФАРМАКОДИНАМИКА ПРИ ОСТРОЙ ИШЕМИИ МИОКАРДА: КЛИНИЧЕСКИЕ РЕЗУЛЬТАТЫ И ЭКСПЕРИМЕНТАЛЬНЫЕ МОДЕЛИ

Михин В.П.*, Покровский М.В., Гуреев В.В., Чернова О.А., Алименко Ю.В., Богословская Е.Н. Курский государственный медицинский университет Росздрава, Курск; ООО "ЭкоФармИнвест", Москва

Резюме

Изучено противоишемическое действие высоких доз кардиоцитопротектора Мексикора (0,014 г/кг/сут, 0,019 г/кг/сут) у кроликов при экспериментальном инфаркте миокарда и противоишемическое действие Мексикора (0,4 г/сут) у больных острым коронарным синдромом (ОКС). Установлена способность Мексикора в эксперименте уменьшать в миокарде зону некроза и значение отношения зона некроза/зона ишемии в сравнении с контрольной группой животных. При ОКС Мексикор ускоряет восстановление диастолической функции левого желудочка и снижает уровень прогормона мозгового натрийуретического пептида (NT-рго BNP) в крови.

Ключевые слова: инфаркт миокарда, острый коронарный синдром, Мексикор, клиника, эксперимент.

Проблема сохранения жизнеспособности миокарда при острой ишемии остается одной из самых значимых в современной клинической и экспериментальной кардиологии. Несмотря на широкое внедрение в клиническую практику фибринолитических средств, обеспечивающих лизис внутрикоронарных тромбов при остром коронарном синдроме, эффективных методов ангиопластики, избежать формирования очага некроза в миокарде зачастую не удается. В этой связи особое значение приобретают цитопротективные препараты, позволяющие сохранить жизнеспособность тканей в зоне ишемии, сократить объем повреждения миокарда и ускорить восстановление функциональной активности мышцы сердца в зоне гибернации [1]. В основе действия современных кардиоцитопротекторов лежит их способность уменьшать физиологическую потребность тканей в кислороде за счет оптимизации внутримитохондриального энергообмена путем активации синтеза АТФ за счет окисления глюкозы и уменьшения использования жирных кислот в метаболической цепи образования АТФ. При этом на образование одной молекулы АТФ за счет окисления глюкозы требуется на 30-35% кислорода меньше, чем при окислении жирных кислот.

В ряде отечественных экспериментальных и клинических исследований показана противоишемическая эффективность отечественного миокардиального цитопротектора — 2-этил-6-метил-3-гидроксипиридина сукцината (Мексикора). Препарат имеет комплексный механизм действия за счет обеспечения кардиомиоцитов сукцинатом (янтарной кислотой), активацией сукцинатдегидрогеназного пути окисления глюкозы, менее кислородзависимых фрагментов цикла Кребса и элементов цитохромной цепи [2]. При этом Мексикор не оказывает прямого

действия на бета-окисление жирных кислот, как это наблюдается при использовании других цитопротекторов: триметазидин непосредственно блокирует бета-окисление в митохондриях [3], милдронат блокирует поступление жирных кислот в митохондрии. В первом случае это может приводить к накоплению недоокисленных жирных кислот в митохондрии, где они послужат субстратом для свободнорадикальных процессов, в обоих случаях может возникать дефицит жирных кислот как субстрата окисления для синтеза АТФ в митохондриях, что, в условиях достаточной оксигенации тканей (в перифокальной зоне инфаркта, зоне реперфузии), приводит к усугублению ишемии, расширению зоны повреждения. Косвенным подтверждением вышесказанного служат результаты внутривенного применения раствора триметазидина в острый период инфаркта миокарда (исследование PPIDD, [4]), не подтвердившего его позитивное влияние на течение острого инфаркта, в связи с чем парентеральные формы триметазидина в клинической практике в настоящее время не используются, хотя противоишемические свойства триметазидина у пациентов с хроническими формами ИБС хорошо известны [5] и определяют показания к его использованию у этой категории больных.

Следует учесть, что цитопротективный эффект Мексикора во многом определяется его антиоксидантными свойствами, позволяющими защитить кардиомиоциты от повреждения свободными радикалами, образующимися в миокарде в зонах ишемии, особенно в период реперфузии [6,7], что особенно важно при использовании в лечебной программе острого коронарного синдрома фибринолитиков и чрескожной ангиопластики [8]. Были продемонстрированы положительные эффекты

Таблица 1 Величина зоны некроза и ишемии у кроликов при экспериментальном инфаркте миокарда на фоне применения Мексикора (М±m)

Доза, г/кг/сут	Зоны, %		
	Ишемии (n=8)	Некроза (n=8)	Некроза/ ишемии (n=8)
Контроль	31,25±4,28	23,09±3,9	72,02±3,94
Мексикор 0,011 г/кг	33,06±3,49	18,03±2,05*	55,00±3,97*v
Мексикор 0,019 г/кг	36,84±2,37	15,24±1,43*	41,47±3,19*v

Примечание: * – p<0,05 по сравнению с контролем. v – p<0,05 различия между группами с различными дозовыми режимами.

Мексикора при экспериментальном коронароокклюзионном инфаркте миокарда в дозах 50 мг/кг и 100 мг/кг in vivo, а также инверсия кардиопротективного эффекта препарата при увеличении дозы до 100 мг/кг [9].

Клинические исслелования в этой области свилетельствуют о способности Мексикора уменьшать выраженность окислительного стресса, ускорять восстановление функциональной активности левого желудочка при инфаркте миокарда, его использование при остром коронарноме синдроме без подъема ST приводило к уменьшению частоты, продолжительности и выраженности ишемии миокарда, ускорению стабилизации стенокардии [10,11]. Однако, зависимость противоишемических эффектов Мексикора в высоких терапевтических дозах остается не изученной, так как недостаточно данных о влиянии Мексикора на исход острого коронарного синдрома при ИБС.

Цель работы — доказать наличие кардиоцитопротективных эффектов Мексикора в высоких терапевтических дозах в эксперименте на лабораторных животных и определить характер влияния препарата на функциональную активность миокарда у больных с острым коронарным синдромом.

Материал и методы

Эксперименты выполнены на лабораторных кроликах массой $2-2.5~\mathrm{kr}$; препарат вводили в дозах $0.011~\mathrm{u}~0.019~\mathrm{r/kr}$ внутривенно за $30~\mathrm{минут}$ до коронароокклюзии. Инфаркт миокарда (ИМ) воспроизводится на наркотизированных животных путем перевязки нисходящей ветви левой коронарной артерии на уровне нижнего края ушка левого предсердия с последующей регистрацией ЭКГ во II стандартном отведении в течение $20~\mathrm{минут}$.

Размеры зон ишемии и некроза определяли при помощи дифференциального индикаторного метода.

Таблица 2 Показатели систолической и диастолической функции левого желудочка больных ОКСбST на фоне лечения Мексикором (М±m)

Показатели	Группы: основная (n=20);	Срок наблюдения, сут		
	контрольная (п=20)	1	5	10
%EF	Контроль	56,4±1,3	55,1±1,4	58,8±1,3
	Основная	52,1±1,2	54,9±1,2	57,8±1,2*
УИ ЛЖ л/мин м ²	Контроль	53,8±2,1	58,6±2,3	59,7±2,2
	Основная	51,7±2,0	55,4±2,5	56,1±2,3
АТ _Е , мсек	Контроль	92,3±4,2	94,3±4,4	108,7±5,2*
	Основная	84,2±3,6	101,3±5,3*	113,3±6,2*
АТ, мсек	Контроль	95,3±6,0	98,4±6,3	96,7±6,1
A	Основная	82,7±4,3	86,7±4,8	95,3±5,5
DT _E , мсек	Контроль	186,7±7,2	166,1±5,9	152,7±5,4*
	Основная	152,7±4,7	180,4±6,7	139,3±7,8*
DT _A , мсек	Контроль	96,7±6,1	88,7±5,7	88,7±5,0
	Основная	86,4±4,9	112,7±5,9*	110,2±5,6*
V _E , см/сек	Контроль	62,5±4,9	64,8±5,0	71,3±4,2*
	Мексикор	61,4±4,3	74,1±4,9*	80,0±4,0*
V _A , cm/cek	Контроль	68,3±4,0	63,3±3,1	63,3±3,2
	Основная	69,1±5,1	60,4±2,6*	61,1±2,1
IVСТ, мсек	Контроль	81,3±4,0	74,7±3,8	76,7±4,1
	Основная	74,0±3,5	82,4±4,1	80,7±3,8
IVRT, мсек	Контроль	120,7±5,9	127,3±6,0	123,3±4,6
	Основная	122,7±4,8	103,3±4,1*	102,4±3,3*

Примечание: * - p < 0.05 (в сравнении с показателем до лечения в / сут).

Таблица 3 Показатели систолической и диастолической функции левого желудочка больных OKC6ST на фоне лечения Мексикором ($M\pm m$)

Показатели	Группа		Срок наблюдения, сут		
		1	5	10	
%EF	Контроль	56,4±1,3	55,1±1,4	58,8±1,3	
	Основная	52,1±1,2	54,9±1,2	57,8±1,2*	
УИ ЛЖ л/мин м ²	Контроль	53,8±2,1	58,6±2,3	59,7±2,2	
	Основная	51,7±2,0	55,4±2,5	56,1±2,3	
AT _E , мсек	Контроль	92,3±4,2	94,3±4,4	108,7±5,2*	
	Основная	84,2±3,6	101,3±5,3*	113,3±6,2*	
AT _A , мсек	Контроль	95,3±6,0	98,4±6,3	96,7±6,1	
	Основная	82,7±4,3	86,7±4,8	95,3±5,5	
DT _E , мсек	Контроль	186,7±7,2	166,1±5,9	152,7±5,4*	
	Основная	152,7±4,7	180,4±6,7	139,3±7,8*	
DT _A , мсек	Контроль	96,7±6,1	88,7±5,7	88,7±5,0	
	Основная	86,4±4,9	112,7±5,9*	110,2±5,6*	
V _E , см/сек	Контроль	62,5±4,9	64,8±5,0	71,3±4,2*	
	Мексикор	61,4±4,3	74,1±4,9*	80,0±4,0*	
V _A , см/сек	Контроль	68,3±4,0	63,3±3,1	63,3±3,2	
	Основная	69,1±5,1	60,4±2,6*	61,1±2,1	
IVCT, мсек	Контроль	81,3±4,0	74,7±3,8	76,7±4,1	
	Основная	74,0±3,5	82,4±4,1	80,7±3,8	
IVRT, мсек	Контроль	120,7±5,9	127,3±6,0	123,3±4,6	
	Основная	122,7±4,8	103,3±4,1*	102,4±3,3*	

Примечание: основная группа - n,=20; контрольная группа - n,=20; * - p<0,05 (в сравнении с показателем до лечения в 1 сут.).

Через 30 минут после коронарной окклюзии животное забивали. Извлеченное сердце перфузировали 0,025% раствором синьки Эванса под давлением 135 см водного ст. до темно-синего окрашивания его интактных отделов. Поперечные срезы миокарда производили через каждые 0,8 см, начиная с уровня 0,8 см ниже места наложенной лигатуры. Срезы фотографировали. Затем срезы миокарда помещали в емкость, содержащую фосфатный буфер (рН 7,4) и 1 мг/млтрифенилтетразолия бромида. Соотношение масс участков ткани и буфера составляло 1:9. Бюксы помещали в термостат, инкубировали при 37 ⁰ С для образования красного формазана, после чего повторно фотографировали. Подсчет площадей интактного, ишемизированного и некротизированного миокарда производили на уровне 0,8 см ниже места наложения лигатуры.

В качестве критериев оценки кардиопротективного действия препаратов служили: величина зоны некроза, зоны ишемии, отношение зоны некроза к зоне ишемии, содержание жидкости в легочной ткани.

Выбранные в эксперименте дозы препарата с учетом межвидового расчета доз [12,13,14] по Хабриеву Р.У., соответствовали 0,8 и 0,14 г/сут для человека.

Клиническая часть исследования включала 128 больных ИБС с ОКС, которым не была показана тромболитическая терапия, разделенных на рандомизированные группы. Первая группа включала 40

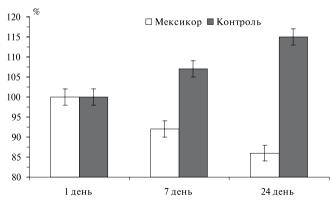
мужчин в возрасте 52,3±3,6 лет с ОКС без подъема сегмента ST (ОКСбSТ) с отсутствием повышения уровня креатинфосфокиназы МВ (КФК МВ) и отрицательной реакцией на тропонин Т в крови; II группу составили 88 больных ОКС с подъемом ST (ОКС ST) в возрасте 53, 4±1,2 г, имеющих в крови превышающий верхнюю границу нормы более чем в 2 раза уровень КФК МВ, позитивный тест на тропонин Т (более 0,03 мг/мл). При анализе ЭКГ среди больных ОКС ST выделялись лица, имеющие глубокий Q.

Каждая из групп была разделена на 2 подгруппы — основную и контрольную (соответственно, по 20 человек для I гр. и по 44 человека для II гр.) Все группы больных получали традиционное лечение — аспирин, гепарин, бета-адреноблокаторы (метопролол 100-150 мг/сут), при необходимости — пролонгированные нитраты, наркотические анальгетики (морфин) для купирования болевого синдрома. Терапия больных основных подгрупп включала Мексикор — 400 мг — дважды в сутки в течение 10 дней парентерально- внутривенно и внутримышечно, затем внутрь в виде капсул в течение последующих 14 дней.

У больных ОКС оценивали диастолическую функцию левого желудочка с помощью импульсно-волновой допплерэхокардиографии [15] на аппарате "Toshiba" и "Sonos-500" на 1-е, 5-е, 10-е сут наблюдения у больных с нестабильной стенокардией (НС); на 1-е, 7-е, 14-е и 24-е сут — у больных острым ИМ (у которых ОКС ST реализовался развитием инфаркта)

Таблица 4 Исходное содержание КФК МВ, тропонинаТ, NT-proBNP у больных ОКС (М±m)

Параметры	OKC ST Q	OKC ST	OKC6ST
КФК МВ мг/мл	158,4±2,8	61,1±2,0	25,1±1,3
Тропонин Т мг/мл	1,1±0,04	0,68±0,026*	0,03±0,01
NT-proBNРмг/мл	1045±42,7	492±20,3*	289±13,2


с расчетом времени ускорения (AT_E , AT_A), замедления ($ДT_E$, $ДT_A$) и средней скорости (V_E , V_A) трансмитрального потока, времени изоволемического сокращения и расслабления левого желудочка (IVCT, IVRT) [16].

Полученные результаты обработаны статистически с использованием разностного метода Стьюдента, критериев χ^2 и критерия Фишера.

Результаты

Наложение лигатуры на нисходящую ветвь левой коронарной артерии у кроликов в группе контрольных животных приводило к развитию некроза миокарда, размер которого составил 72,02±3,94 % от зоны ишемии. Применение препарата в указанных дозах приводило к статистически значимому снижению площади участка некроза в зоне ишемии по отношению к группе контрольных животных (табл.1). В частности, в дозе 0,014 г/кг и 0,024 определялся четкий дозозависимый эффект Мексикора: различия (p<0,05) с контролем величины зоны некроза на срезах миокарда составляли более 34% и 22% от площади некроза, соответственно. Более наглядны противоишемические эффекты Мексикора при сравнении значения отношения некроз/ишемия: различия с контролем составляют более 17 и 31 в абсолютных числах, соответственно. Менее выраженные различия в величине зоны ишемии в основных группах и в контроле обусловлены динамическим переходом зоны ишемии в зону с нормальным метаболизмом и сокращением зоны некроза за счет ее перехода в зону ишемии. При этом зависимость доза-эффект не вызывает сомнения.

Эффекты более высоких доз Мексикора, по всей видимости, заключается не только в сохранении

Рис. 1. Изменение содержания NT-proBNP в крови больных ОКС ST Q на фоне терапии Мексикором.

большего объема жизнеспособного миокарда в ближайшее время после коронароокклюзии, но и в увеличении времени до появления в нем необратимых изменений, что позволяет ишемизированному миокарду сохранить жизнеспособность до открытия коллатералей [17,18,19].

У больных ОКС обеих групп допплерэхокардиографические параметры трансмитрального потока соответствовали 1 типу диастолической дисфункции левого желудочка и характеризовались замедлением скорости падения давления в левом желудочке, снижением скорости нарастания пика Е, удлинением IVRT, компенсаторным усилением систолы предсердий (увеличением амплитуды пика A) и укорочением IVCT (табл. 2,3).

У больных ОКСбST (табл.2) Мексикор к 10 сут терапии ускорял нормализацию некоторых параметров трансмитрального потока: АТ к 5 сут возрастало на 19.9%, к 10 — на 34.6%, в то время как в контрольной подгруппе этот показатель достоверно возрастал лишь к 10-м сут на 17,8%. Значение DT, в подгруппе сравнения за период наблюдения не изменялось, а у больных, получавших Мексикор, значение DT, к 5-м и 10-м сут наблюдения возрастало соответственно на 30,4 % и 27,5%. Скорость трансмитрального потока Е при лечении Мексикором начинала увеличиваться раньше, чем в группе сравнения – с 5-х сут на 20,7%, к 10-м сут — на 30,3%, в то время как только при традиционной терапии $V_{_{\rm E}}$, возрастала на 14,1% лишь к 10-м суткам. В отличие от подгруппы сравнения, где значение IVRT не менялось, IVRT при лечении Мексикором уменьшалось к 5-м сут на 15,6% и сохранялось на достигнутом уровне. Различия между подгруппами достоверны (p < 0.05).

У больных ОКС ST время изоволемического расслабления (IVRT) существенно превышало норму в 1-е сут болезни в обеих подгруппах. При лечении Мексикором к 14-м сут наблюдалось его уменьшение (на 17,0%), в то время как аналогичное уменьшение значения IVRT (на 15,2 %) в подгруппе сравнения наблюдалось лишь к 24-м суткам. Анализ динамики изменения параметров трансмитрального потока в обеих подгруппах больных ОКС ST показал достоверную способность Мексикора ускорять их нормализацию, что свидетельствовало о благоприятном воздействии Мексикора на параметры трансмитрального потока и диастолическую функцию миокарда левого желудочка (табл.3) В частности, скорость трансмитрального потока Е при лечении Мексикором

к 7 сут увеличивалась на 13% в сравнении с исходным значением, а в контрольной группе – лишь на 5% (p<0,05), к 14 сут величина $V_{_{\rm F}}$ в основной группе возросла на 22%, а в контрольной – только на 13% и лишь к 24 сут приближалась к уровню в основной группе. Значение $V_{_{\! A}}$ в основной группе, напротив, снижалось на 24% в сравнении с исходным и сохранялось на достигнутом уровне до 24 сут, в контрольной группе снижение величины $V_{_{\scriptscriptstyle A}}$ начиналось позднее — лишь с 14 сут и составляло 15% (p<0,05). Соотношение пиков Е/А (основной параметр, характеризующий степень диастолической дисфункции левого желудочка) в основной группе начинало возрастать уже к 7 сут лечения и достигало значения 1,15 и 1,22, соответственно, к 14 и 24 сут, в то время как в контрольной группе значение Е/А увеличивалось лишь к 14 сут и на протяжении всего периода наблюдения было достоверно (p<0.05) ниже, чем в основной -0.97 и 0.98.

Указанные эффекты Мексикора, вероятно, объясняются улучшением энергетического обмена в зоне ишемии или периинфарктной зоне и восстановлением коллатерального кровотока [20], что приводит к переходу ишемизированного либо гибернирующего миокарда в активное состояние [7,21].

При оценке уровня прогормона мозгового натрий – уретического пептида (NT-proBNP) в крови обследованных больных было установлено, что в группе OKC ST Q зарегистрирован высокий уровень NT-proBNP, который был выше 900 мг/мл, а у больных ОКС бST он был ниже 300 мг/мл (табл.4). При анализе взаимосвязи между характером изменения уровня биохимических маркеров было установлено, что появлению патологического зубца Q на ЭКГ у больных ОКС ST предшествовало более значимое повышение уровня NT-proBNP, значение которого находилось в тесной корреляционной связи с концентрацией КФК МВ (r=0.67, p<0.05) и тропонином T (r=0.59, p<0.05). При этом статистически значимое увеличение NT-proBNP предшествовало повышению остальных исследуемых энзимов. У больных с ОКС ST без Q на ЭКГ уровень

Литература

- 1. Голиков А.П., Полумисков В.Ю., Михин В.П. Антиоксидантыцитопротекторы в кардиологии // Кардиоваскулярная терапия и профилактика, 2004.- N6.- C.21-25.
- 2. Лукъянова Л.Д. Метаболические эффекты 3-оксипиридина сукцината. Хим. фарм. журнал 1990.- N8.- C. 8-11.
- 3. Калвиньш И. Я. Милдронат и триметазидин: сходство и различие в их действии // Terra medica nova 2002.-N3.-C. 3-15.
- The EMIP-FR Group. Effect of 48-h trimetazidine on short- and long-term outcomes of patients with acute myocardial infarction, with and without thrombolytic therapy. A double-blind, placebocontrolled, randomized trial// Eur. Heart. J. 2000.-V.21.- p.1537-1546.
- Сыркин АЛ, Долецкий АА. Триметазидин в лечении ишемической болезни сердца// Клиническая фармакология и терапия. 2001.- N10(1).- C.1 – 4.
- 6. Зенков Н.К., Ланкин В.З., Меньшикова Е.Б. Окислительный стресс. М.: Наука; 2001.

NT-proBNP был достоверно ниже, чем в группе больных с ОКС ST Q, но степень его повышения также находилась в достаточно высокой корреляционной зависимости с изменением КФК МВ (r=0,54, p<0,05) и тропонином T (r=0,64, p<0,05) и по времени опережала увеличение последних. У больных ОКСбST (у которых в дальнейшем не зарегистрировано развитие инфаркта миокарда) изменения NT-proBNP были еще менее значимы и сопровождались отсутствием какой-либо существенной динамики со стороны КФК МВ и тропонина T.

У больных ОКС ST (Q), получавших Мексикор, в отличие от больных, получавших традиционную терапию (рис.1), уровень NT-ргоВNР снижался на 7.8% и 14.4%, в то время как в группе сравнения он возрастал на 6.8% и 15% соответственно (p<0.05).

Учитывая, что уровень NT-proBNP может служить биохимическим маркером выраженности сердечной недостаточности и отражает нарушение сократительной способности миокарда, ведущее к экспрессии системы NT-proBNP в миокарде [22], можно считать, что Мексикор способствует восстановлению сократительной активности миокарда, а динамика содержания NT-proBNP в крови согласуется с изменениями параметров диастолической дисфункции левого желудочка.

Таким образом, в экспериментальных моделях острого инфаркта миокарда на кроликах Мексикор в дозах, превышающих соответствующие терапевтические дозы для человека, оказывает дозозависимое противоишемическое действие, которое выражается в сокращении зоны некроза и величины соотношения объемов зон некроза/ишемии в миокарде. Включение в комплексную терапию ОКС Мексикора позволяет ускорить восстановление диастолической функции миокарда левого желудочка, улучшить его сократительную активность, что приводит к уменьшению продукции NT-proBNP в миокарде. Полученные результаты свидетельствуют об эффективности Мексикора при остром коронарном синдроме и перспективности дальнейшего изучения возможностей увеличения суточных терапевтических доз препарата.

- Биленко М.В. Ишемические и реперфузионные повреждения органов. М.: Медицина; 1989.
- Ланкин В.З., Тихадзе А.К., Беленков Ю.Н. Свободнорадикальные процессы в норме и при патологических состояниях. Москва: РКНПК МЗ РФ: 2001.
- Воронина В.А. Отечественный препарат нового поколения МЕКСИДОЛ[®]: основные эффекты, механизм действия, применение. Москва, − 2005 г.
- 10. Голиков А.П, Михин В.П., Полумисков В.Ю. и др. Эффективность цитопротектора мексикора в неотложной кардиологии // Тер. Архив 2004.- №4.-С.60-65.
- Сернов Л.Д., Клинико-экспериментальное исследование противоишемической и гиполипидемической активности мексикора// Клинические исследования лекарственных средств в России. 2004. N1. –С. 24-28.
- 12. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / Под ред. чл.-корр.

- РАМН, проф. Р.У. Хабриева. 2-е изд., перераб. и доп. М.: OAO Издательство "Медицина", 2005. 832 с.: ил.
- Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / Под ред. В.П. Фесенко. Минздрав РФ. ЗАО "ИИА Ремедиум" Москва, 2000. 398с.
- Сернов Л.Н., Гацура В.В. Элементы экспериментальной фармакологии. – М., 2000. – 352 с.
- 15. Фейгенбаум Х. Эхокардиография М: Видар 1999. 336-384.
- Митьков В.В. Клиническое руководство по ультразвуковой диагностике. М: Видар 1999, С.128-160.
- Клебанов Г.И., Капитанов А.Б., Теселкин Ю.О. и др. Антиоксидантные свойства производных 3-оксипиридина: мексидола, эмоксипина и проксипина // Биол. Мембраны, 1998.- N15.- C. 227-237.
- В.П. Михин. Кардиопротектор Мексикор новое направление в лечении ишемической болезни сердца и артериальной гипертензии/ Под ред. В.П. Михина. Москва, 2008, 52с.

- Корокин М.В., Пашин Е.Н., Бобраков К.Е. и др. Эндотелиопротективные, кардиопротективные и коронаролитические эффекты производных 3-окси-пиридина // Научно-практический вестник "Человек и здоровье", Курск, 2009, №4, с.8-12.
- Бувальцев, В.И. Дисфункция эндотелия как новая концепция профилактики и лечения сердечно-сосудистых заболеваний // Междунар. мед. журн. — 2001. — № 3. — С. 202-208
- 21. Михин В.П., Михайлова Т.Ю., Харченко А.В. и др. Эффективность пролонгированных нитратов у больных стабильной стенокардией напряжения на фоне сочетанного применения мексикора. // Клинические исследования лекарственных средств в России. 2003. N2. С. 23-26.
- 22. Михин В.П. Савельева В.В. Роль кардиоцитопротекторов в терапии хронической сердечной недостаточности ишемического генеза // Российский кардиологический журнал. 2009.- N1.- C. 49-56.

Abstract

Anti-ischemic effects of high-dose cardiac cytoprotector Mexicor (0,014 g/kg/d, 0,019 g/kg/d) were examined in rabbits with experimental myocardial infarction. In addition, anti-ischemic activity of Mexicor (0,4 g/d) was assessed in patients with acute coronary syndrome (ACS). It has been demonstrated that Mexicor reduced the size of infarction area and decreased the ratio "necrosis area / ischemia area", compared to the control animals. In ACS patients, Mexicor facilitated faster recovery of left ventricular diastolic function, and also decreased blood levels of NT-proBNP.

Key words: Myocardial infarction, acute coronary syndrome, Mexicor, clinical settings, experiment.

Поступила 11/02 — 2011

© Коллектив авторов, 2009 E-mail: main@kgmu.kursknet.ru

[Михин В.П. (*контактное лицо) — профессор, зав. кафедрой внутренних болезней №2, Покровский М.В. — врач-кардиолог, Гуреев В.В. — врач-кардиолог, Чернова О.А.- врач-кардиолог, Алименко Ю.В. — врач-кардиолог, Богословская Е.Н. — врач-кардиолог].